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Rotation, offset and separation of oblique-fracture (rhombic) boudins: 
theory and experiments under layer-normal compression 
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Al~tract--Boudinage structures are generally produced by extension fracturing of competent rocks normal to 
layering. Boudin-like structures may also develop by shear fracturing of competent rocks oblique to layering. In 
such structures boudins of rhomboid shape are rotated and offset with respect to each other. It is usually 
considered that shear fracture boudins do not get separated until a critical rotation is attained, when they can just 
touch each other. However, the experiments under layer-normal compression and the theoretical analysis of the 
present study indicate that the layer-segments produced by a set of parallel shear fractures may undergo rotation 
with separation or rotation with interracial slip depending upon their geometry. The thickness to length ratio ( ~ )  
of layer-segments and the orientation of fractures (~) are the parameters that could control the rate of rotation 
versus rate of displacement of layer-segments. 

INTRODUCTION 

BOUDINAGE structure is one of the characteristic features 
of rocks that have layers of contrasting competency and 
have undergone layer-parallel extension. The classical 
type of boudinage structures, as described by Lohest 
(1909), Corin (1932), Wegmann (1932) and Ramberg 
(1955), develop due to extension-fracturing of com- 
petent layers perpendicular to the layering. Such boudi- 
naged layers show separated rectangular segments and 
the separation zones are generally filled with vein- 
materials. Boudin-like structures in competent layers 
may also develop by shear fracturing (Cloos 1947, Ue- 
mura 1965). In this type of boudinage, competent layers 
are offset by layer-oblique shear fractures producing a 
series of faulted rhomboid blocks in a ductile matrix 
(e.g. fig. 2.16 of Ramsay & Huber 1983). 

Shear fractures, associated with boudinage structures, 
were obtained in rock deformation experiments by 
Griggs & Handin (1960), Paterson & Weiss (1968) and 
Gay & Jaeger (1975). Tvergaard et al. (1981) have also 
shown from finite element analysis that several types of 
shear bands may develop in a layer depending upon the 
rheological property and the initial geometrical inhomo- 
geneities. Experimental models consisting of rigid 
layers, segmented by parallel oblique-cuts, and embed- 
ded in viscous media show rotation and offset of the 
layer-segments in response to layer-normal compression 
(Karmakar & Mandal 1989). The sense of rotation and 
offset of the segments are consistent with overall exten- 
sion of the layers. 

It is generally considered that during layer-parallel 
extension of a competent layer, segmented by a series of 
parallel shear fractures, the individual layer-segments 
start to rotate about their centres. The rotation is accom- 
panied by slip along the fractures causing offset, and the 
segments do not get separated until a critical rotation is 
attained when the layer segments can just touch each 
other (Fig. la). However, in many natural deformed 

rocks (fig. 118b of Stach 1982, Ramsay & Huber 1987, p. 
633) rigid rhombic boudins are observed to have been 
separated from each other before the critical rotation of 
boudins was reached (Fig. lb). This fact suggests that in 
certain situations, separation of layer-segments may 
accompany rotation of the segments following initiation 
of shear fractures. 

In this paper we use theory and experiments to ana- 
lyse the mode of displacement of layer-segments, separ- 
ated by oblique fractures, of a rigid layer embedded in a 
ductile matrix under layer-normal compression. Our 

II 

Fig. l. Schematic diagram showing (a) critical stage of rotation of 
layer-scgrncnts just prior to separation in the evolution of typical shear 
fracture boudinagc and (b) boudinagc structure rendered through 

simultaneous separation and rotation of layer-segments. 
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theoretical analysis considers displacement of the layer- 
segments as a response to the layer-parallel viscous flow 
of the surrounding matrix and we derive a mathematical 
equation involving parameters in relation to geometry of 
layer-segments and orientation of fractures. The graphi- 
cal representation of the equation reveals two fields in a 
co-ordinate system of the two parameters mentioned 
above. In one of the fields layer-segments would show 
rotation and offset without producing any separation; in 
the other the segments would not be in contact with each 
other immediately after initiation of fractures, and 
would separate along with their rotation. Our experi- 
mental observations concur with the theoretical results. 

EXPERIMENTS ON ROTATION AND 
SEPARATION OF BOUDINS 

A rigid wax layer, segmented by a series of cuts 
oblique to the layering, was submerged in a block of 
pitch (viscous medium). The top of the wax layer was at 
the same level as the top of the pitch. The pitch-block 
was sided by two wooden bars parallel to the wax layer 
(Fig. 2). The interfaces between the pitch and the 
wooden bars were smeared with soapy-water to lubri- 
cate the flow of pitch along these surfaces. The model 
was set on a glass plate that was smeared with the same 
lubricant to minimize friction to viscous flow at the 
bottom. The pitch-block was shortened by moving the 
wooden bars towards each other in the direction perpen- 
dicular to the layering. During the deformation, a glass 
plate was pressed over the model to restrict swelling of 
the pitch in the vertical direction. 

With the help of this model set-up, a number of 
experiments were carried out using rigid layers of differ- 
ent width to length ratio (Gr) of layer-segments and 
different angles of cut (~) with the layer-normal. The 
experimental results are summarized below. 

(a) Experiment with G~ = 0.5 and ~b = 30 ° 

Under layer-normal compression the model showed 
development of separation zones accompanying ro- 
tation of the layer-segments (Fig. 3a). However, the 
angular changes of the layer-segments due to rotation 
were small compared to the width of the separation 
zones which increased significantly during progressive 
deformation of the model (Fig. 3ai-iii). 

Gross pt0telbase) 

Fig. 2. A schematic sketch of the experimental set-up. 

(b) Experiment with Gr = 2.0 and q~ = 28 ° 

In this experiment (Fig. 3b) no separation zones were 
produced at any stage of deformation of the model. The 
layer was offset by rotation of the layer-segments pro- 
ducing structures which looked very similar to typical 
shear fracture boudinage structure (Ramsay & Huber 
1983). The magnitude of offset increased with increase 
in rotation of the layer-segments during progressive 
deformation of the model. 

(c) Experiment with Gr = 1.0 and ~ = 26 ° 

Separation zones were again obtained accompanying 
rotation of the layer-segments similar to that in experi- 
ment (a). However, the width of the separation zones 
did not increase at a comparable rate to that in experi- 
ment (a). A comparison of the two experiments reveals 
that the layer-segments of this experiment (c) under- 
went a greater amount of rotation for a unit increment of 
separation (Fig. 3c). 

A set of experiments was done to reveal the nature of 
displacement of layer-segments when fractures are at a 
high angle to the layer-normal. The rigid wax layer has 
oblique cuts at an angle of 45 ° with the layering. The 
experiments were conducted with different values of Gr 
with an aim to understanding how the variation of width 
to length ratio of layer-segments could affect the devel- 
opment of boudinage structures for a fixed value of ~. 
The experimental results are summarized below. 

(d) Experiment with ~ = 45 ° and G~ = 0.85 

Under layer-normal compression the rigid layer 
underwent rotation and offset of the layer-segments 
(Fig. 4a). Separation zones were not produced at any 
stage of progressive deformation of the model (Fig. 4ai- 
iii). 

(e) Experiment with ~ = 45 ° and Gr = 0.6 

The experiment exhibited a similar structural evol- 
ution (Fig. 4b) to that shown by experiment (d). How- 
ever, the rotation and hence offset of the layer-segments 
did not increase at the same rate in the two experiments 
(Fig. 4bi-iii). 

(f) Experiment with ,p = 45 ° and Gr = 0.2 

At this value of Gr separation zones along with ro- 
tation of the layer-segments were obtained (Fig. 4c). 
The amount  of rotation of the segments increased with 
separation but not at the rate shown by the previous two 
experiments (Fig. 4ci-iii). 

THEORETICAL ANALYSIS 

Let ABCD and EFBA be the cross-sections of any 
two adjacent segments of a rigid, segmented layer in an 



R o t a t i o n ,  o f f s e t  a n d  s e p a r a t i o n  o f  o b l i q u e - f r a c t u r e  b o u d i n s  

Fig. 3, Succcssivc stagcs of devclopmen! of boudinage structures in segmented layers for (a) Gr = 0.5 and ¢ = 30 °, (b) 
G r = 2.0 and ¢ = 28* and (c) Gr = 1.0 and ¢ = 26*. (i), (ii) and (iii) are three stages of each experiments.  Note that in (c) 

separation to rotation ratio is lower than that in (a). 
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Fig. 4. Successive stages of boudinage structures in segmented layers with q~ = 45 ° and Gr = 0.85, 0.6 and 0.2 in (a), (b) & 
(c), respectively. (i), (ii) and (iii) are the three stages of each experiment. Note that in (b) rotation of the layer-segments is 

smaller than that in (a) 
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Fig. 5. Geometrical  representation of two adjacent  segments  of  a layer 
in a co-ordinate frame x, y; the arrows on the boundar ies  and inside the  
boundaries indicate shear stresses exerted by a viscous flow and the 
resultant forces on the segments ,  respectively. 

infinitely extended viscous medium (Fig. 5). Under a 
layer-normal compression the viscous flow of the matrix 
exerts shear stresses over the layer-surfaces, and results 
in displacement of the segments. Let Fu and F~ be the 
forces on the faces BC and AD, respectively. In the 
assumed frame of reference (x, y) the magnitude of 
forces on the upper and lower faces of the segment 
EFBA correspond to that on the lower and upper faces 
of the segment ABCD, respectively. It is apparent from 
Fig. 5 that Fu and Fl are unequal in magnitude (in this 
case Fu > Fl). Since F .  is greater than Fj, the amount by 
which Fu exceeds FI would act as a coupling force on the 
segment; whereas the amount of Fu that equals Fj along 
with the force F l would act as a translatory force. Thus, 
the coupling force FR = F, - F1 would tend to rotate the 
segments and the force 2F I would tend to pull apart the 
segments from each other. The forces F ,  and Fj can be 
written in terms of a stress function as 

I 
X 

Fu = r(x) dx (la)  
a x  i 

F, = r(x) dx + r(x) dx, (lb) 

where r(x) is the shear stress function on the rigid layer 
for viscous flow; xi, x2, -x~ are the abscissae of the 
comers of the segment ABCD which can be given as 

xl = t + tan q~ (2a) 

x 2 = d + tan ~0 (2b) 

x~ = t tan ~ (2c) 

x~ = d - t tan ~, (2d) 

where 2t and d are the layer-thickness and the length of 
the layer-segments, and ~ is the angle between fractures 
and the layer-normal (Fig. 5). 

Stress f unc t ion  

Let us choose a reference frame (X, Y) where the Y 
axis is perpendicular to the layer and the X axis coincides 
with the surface of the rigid layer and is parallel to the 

bulk extension. This is related to the previous reference 
frame as Y = y - t and X = x. In the region far away from 
the rigid surface the stream function of a viscous flow can 
be given as 

~2 = a X Y ,  (3) 

where a is a constant which can be solved as 

a2~p 
a -  

OXOY 

OU 
- k~, (4) 

OX 

where ~ is the far-field strain rate along the X axis of the 
viscous medium. 

However,  the stream function in the neighbourhood 
of the rigid layer will be different from that of the far- 
field region because of the restriction of the viscous flow 
on the rigid surfaces. Since the velocity-component 
along the Y axis is independent of X, i.e. a material line 
parallel to the rigid layer remains in the same orientation 
during deformation, the differential form of the general 
stream function in the neighbourhood of the rigid sur- 
faces can be expressed as 

O'--X- 9 (Y)  + 9°(Y) '  (5) 

where ~p0(Y) stands for the differential form of the 
far-field stream function, given in equation (4), with 
respect to X. 9(Y) is the additional function imposed by 
the flow-restriction at the surface which will satisfy the 
following boundary conditions: 

q0(Y)--*0 as y___~ 0o and 0. (6) 

To satisfy the above boundary conditions q~(Y) can be 
expressed as 

cp(Y) = C Y e  - K v ,  (7) 

where C and K are constants. Then, the general stream 
function becomes 

O__~_~ = C Y e _ X V  + b~cY. (8) 
aX 

The solution of the above equation gives 

~p = (Ce - r v  + ~yr )XY  + constant. (9) 

The velocity-component along the X axis at a point in 
the neighbourhood of the rigid surfaces can be obtained 
by differentiating equation (9) with respect to Y as 

U = (Ce - r r  - C K e  - K Y  + ~ ) X .  (10) 

Imposing the boundary condition U = 0 at Y = 0 in 
equation (10) we get C = -k~ .  Then equation (9) can be 
written as 

~0 = ~ , ( 1  - e - K Y ) x Y  + constant. (11) 

The velocity-gradient of U in the direction of the Y 
axis at any point in the neighbourhood of the rigid 
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surface can be obtained by taking the second-order 
derivative of equation (11) with respect to Y as 

OU _ K ~ ( 2 e _ K V  - K Y e _ K V ) X  (12) 
OY 

At the rigid surface Y = 0 

(OU) = 2 K b , X .  (13) 
0-Y Y=0 

The shear stresses on the rigid surface exerted by a 
viscous flow at any point (X, 0) can be solved with the 
help of equation (13) as 

(0_~) = 2Kr l~ ,X ,  (14) r ( X )  = r/ r = 0 

where ,7 is the coefficient of viscosity of the embedding 
medium. Now the stress function on the boundary of the 
rigid layer can be transformed to xy  co-ordinates as 

r(x) = 2r/K~x. (15) 

Forces on segments o f  the rigid layer 

die out asymptotically away from the rigid layer. The 
deflected configuration of the material line for unit time 
representing variation of velocity-component along the 
x axis in the neighbourhood of the moving layer- 
segments can be expressed as 

)( = ½be-v,  (20a) 

where / )  is the rate of displacement of one layer-segment 
with respect to its adjacent layer-segment. By differen- 
tiating equation (20a) we get 

d ) (  _ 1 L)e_ Y 
d Y  2 

and at Y = 0 

d X  
_ 1 D .  (20b) 

dY 2 

Drag force per unit area can be evaluated from the 
velocity gradient at the boundary of the layer-segments 
given in equation (20b), and is given by 

dX 1 r/D. (21) 
r = r / d Y -  2 

Forces Fu and F~ on the segment ABCD can be 
evaluated by substituting the expression of stress func- 
tion from equation (15) in equation (1). Then we get 

Fu = 2rIKk* dx = rlKk*(x 2 - x~). (16) 
X 

Substituting the values of xl and Xz from equations (2a) 
and (2b) in equation (1) Fu can be rewritten after 
simplification as 

Fu = r]Ke*(d 2 + 2dt tan q0). (16a) 

Similarly F 1 can be solved with the help of equations (1 b) 
and (15) and after simplification it can be written as 

F 1 = ~lKk*(d 2 - 2dt tan q~). (17) 

The layer-segments will tend to be pulled apart from 
each other by a force 

FD = 2F1 = 2qKk*(d 2 - 2dt tan q~) (18) 

and the coupling component of the forces F~ and FI 
which tend to rotate each segments will be given by 

FR = Fu - F~ = 4rlKk* dt tan q~. (19) 

By equating the magnitude of the pulling force given in 
equation (18) and the drag force given in equation (21) 
on a segment we get 

b = 2e*K(d - 2t tan ~p). (22) 

(ii) Displacement  o f  layer-segments due to rotation. 
Let the co-ordinates of one of the corners of a segment 
be (x, y) (Fig. 6), where 

x = r c o s 0 - ½ d  and y = r s i n 0 .  

Differentiating with respect to time 

dx 0 d 0  
- r sin 

dt dt 

or 

s x -  d x -  y W ,  (23) 
dt 

where Sx is the rate of displacement-component of the 
point along the x axis for a rate of rotation W which can 
be equated with the force along x axis in a similar way to 
the previous case. Then we get 

Separation vs rotation o f  layer-segments 

In order to understand separation vs rotation of bou- 
dins the rates of displacements of centres of the seg- 
ments under a pulling force FD and under a coupling 
force F R may be analysed separately and then con- 
sidered together for mathematical convenience. 

(i) Displacement  o f  layer-segments under  a pull ing 
force  F o. Under a translation motion, a material line 
perpendicular to layering and stuck to the surface of a 
layer-segment will be deflected and the deflection will 

I 
~, ~ I I/ "lt$ x I 

/~l/IS 11 

Fig. 6. Diagram showing displacement-components of a layer-segment 
due to its rotation. 
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Again, 

or  

o r  

From Fig. 6 

Sx = 2k~t tan ~. (24) 

y = r sin 0 

dy = cos 0 dO 

dy = (½d + t tan q~) dO. (25a) 

dSb = (½d + t tan ¢,) tan 0 dO. (25b) 

Then the total displacement of centres of the segments in 
the x-direction required to accommodate a small 
amount of rotation d0 (Fig. 6) can be written as 

dD R = dS x + dS b 

o r  

dD R = (t sec 2 q~ + ½d tan ~) dO. (26a) 

With the help of equations (23) and (24) equation (26a) 
can be modified to 

D R = 2 K ~ t  sec 2 ~ + ½d tan ~b) tan ~. (26b) 

/~ R is the rate of displacement of centres of the segments 
consequential to rotation. 

(iii) Separation vs rotation-and-offset o f .  layer- 
segments. Now the ratio of the two rates/~ and Da may 
be used to envisage the influence of the geometry of 
layer-segments on the processes of rotation, offset and 
separation. The ratio can be obtained from equations 
(22) and (26b) as 

Kr = b_~R = 2t sec 2 ~b + d tan ¢ tan ¢ 
D 2(d - 2t tan q~) 

o r  

Kr = G~ sec  2 ~ + tan ¢ tan ¢, 
2(1 - G~ tan ¢) 

(27) 

where G~ is the ratio of width to length of layer- 
segments. 

Equation (27) shows that the ratio K, is a function of 
only two geometrical parameters G~ and ~. The curves 
for different K~ values in the co-ordinate system (~, Gr) 
are shown in Fig. 7. It is evident that when K, ~> 1 (e.g. 
for points above the solid line of Fig. 7) displacement of 
centres of the segments due to rotation in response to 
coupling forces exceeds or just equals the displacement 
of centres due to translation of layer-segments in re- 
sponse to the pulling force. As a result, layer-segments 
will show only rotation-and-offset without producing 
separation zones in between them. On the other hand, 
when K, < 1 (e.g. for the points below the solid line of 
Fig. 7) the displacement of centres by translation of 
layer-segments exceeds the displacement by rotation of 
layer-segments, and separation zones will be produced 
along with rotation of layer-segments. 

~ .  K7 0-2~ K~0.S ~p ~2 ~4 

3"2. 

3.0' 

2 6  

2.6 ~ \ ,,• ~, 

2-4 
l ~ \ k • 

1"9 ", \ , ,  • 

fie- x " ' .  " ' .  ed 

0- ,~-  

0-2- f 

- -  ~ ,'o ~ io ~'~ 3'o ]~" ~'o ,~ 

Fig. 7. Rate-cur~es for different K values; solid circles a, b, . . .  mark 
the experimental data. 

DISCUSSION 

The projection of geometrical data of the experiments 
in the co-ordinate frame (~, G,) reveals that those 
experiments (a, c and f) having ~ G, values below the 
theoretical curve Kr = 1 (Fig. 7) show development of 
separation zones along with rotation of layer-segments. 
On the other hand, those experiments (b, d and e) having 
values above the curve K~ = 1 show only rotation and 
offset of layer-segments without producing separation 
zones. So both the theory and the experiments concur 
that under layer-normal compression a rigid layer seg- 
mented by a set of parallel shear fractures may exhibit 
either separation or only rotation and offset of boudins 
depending upon their geometry. These results can be 
extended to natural deformed rocks where typical non- 
separated shear fracture boudins may grade to separated 
shear fracture boudins in a single competent layer due to 
decrease in the thickness to length ratio of boudins even 
though the orientation of fractures remain the same. 

In the field Kr < 1 separation per unit rotation of 
layer-segments increases with the decrease in the K, 
value. Such variation can be obtained by comparing 
experiments (a) and (c). Similarly, in the field Kr > 1 the 
increase of rate of rotation and offsetting of layer- 
segments with the increase in Kr value is observed in 
experiments (d) and (e). 

In the present theoretical analysis the additional effect 
of flow-restriction due to rigid surface on the general 
stream function has been expressed by a simple expo- 
nential function which may not strictly hold in real 
situations. However, this does not matter on the applica- 
bility of equation (27) because the ratio of the two rates 
is considered here, and hence coefficients or other 
power-terms coming as constants with the differential 
form of the stream function will make no difference. On 
the same ground the coefficient of Y of the exponential 



356 N. MANDAL and D, KhAN 

term in equation (20a) has been assumed to be unity. It is 
important to note that in the present theoretical con- 
sideration since the boundary conditions are given for 
the stage of initiation of movements in a segmented layer 
the equations will hold good up to a small amount  of 
rotation of the layer-segments. However ,  this analysis 
may be extended to large movement  of the layer- 
segments if the boundary conditions are modified at 
successive stages of a progressive deformation. 

The positions of the curves in the field of ~O and Gr are 
likely to be shifted when deformation is not of pure shear 
type. In this regard there may be some discrepancies if 
we attempt to fit a value obtained from natural deformed 
rocks with the theoretical curves presented here. 
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